

Pune & Mumbai

WhatsApp: +91-7378493293 Phone: +91-7378483656 enquiry@gamakaai.com gamakaai.com

Table of Contents

I.	Introduction2
	About US
	Target Audience
	Program Structure
	Program Flow
	Data Science Process
	Projects/Case Studies
	Impact of Data Science
II.	What You Get!!!
	Course Completion Certificate
	Internship Certificate
	Advantages of joining GAMAKA AI
III.	Struggling to Get a Job?10
	Industry Recruitment Challenge
	Strategies to get a job
	Trainer Role
	Our Students Placed Companies
IV.	Syllabus12
	Python - Basic & Advanced
	Data Science with Python
	Bigdata & Hadoop on AWS (Data Science Track)
	Deep Learning with TensorFlow, Natural Language Processing & Neural Networks
	Database (Sql Server/Oracle)
	Tableau
	Mongo DB
	Computer Vision & NLP

Introduction

About US

- Gamaka AI is a leading High-End Training on Emerging Technology and Placement company in India managed by IT veterans with more than a decade experience in leading MNC companies.
- We are known for our practical approach towards trainings that enable students to gain real-time exposure on competitive technologies. Trainings are offered by employees from MNCs to give a real corporate exposure.

Target Audience

- Freshers from BCA, BCS, BE, BTech, MTech, MCA. MCS
- Final Year/Internship projects for BCA, BCS, BE, BTech, MTech, MCA. MCS
- Non-IT Professionals who've worked mostly with tools like Excel and want to learn how to use R for statistical analysis.
- Business Analyst
- IT Project Managers
- MBA Graduates or business professionals who are looking to move to a heavily quantitative role.
- Engineering Undergraduate/Graduate/Professionals who want to understand basic statistics and lay a foundation for a career in Data Science

No Prior Programming/Coding Skills Required

Program Structure

- Python Basic & Advanced
- SQL & No SQL MongoDB
- Machine Learning
- Deep Learning
- Computer Vision
- NLP
- Tableau
- Big Data on AWS (data science track)
- 15 Projects
- Internship 3 months (Internal/Tie-ups)

Interview Preparation, Resume Building, GIT Profile, 100% Placement Assistance, Projects

Note: Separate batch & additional 1-month extra sessions for NON-IT Professionals to build strong programming skills from scratch.

Duration: 4 Months / 250+ hours. For NON-IT: 6 Months

Program Flow

Data Science Process

Data Science Knowledge Stack

Projects/Case Studies

- Forecasting Stock and Commodity Prices
- Build your own image recognition model with TensorFlow
- Customer Segmentation and Effective Cross Selling
- Predict fraud with data visualization & predictive modelling
- Chatbot Project using Microsoft Luis/Google Dialog flow/Amazon Lex.
- Deep Learning Customer Feedback analysis using RNN LSTM.
- Deep Learning Family member detection.
- Deep Learning Industry financial growth prediction.
- Deep Learning Speech recognition-based attendance system.
- Deep Learning Vehicle Number plate detection and recognition system
- Forecasting Stock and Commodity Prices
- Build your own image recognition model with TensorFlow
- Web Scrapping Web crawlers for image data sentiment analysis and product review sentiment analysis.
- Predict fraud with data visualization & predictive modelling
- Analyzing Movie Reviews Sentiment.
- Analyzing Music Trends and Recommendations
- Time Series Arimam, Sarima, Auto Arima
- Time series using RNN LSTM Build your own Recommendation System
- Build your own Python predictive modelling, regression analysis & machine learning Model
- Football Players (Estimating Population Mean from a Sample)
- Election Polling (Estimating Population Proportion from a Sample)
- A Medical Study (Hypothesis Test for the Population Mean) Employee Behavior (Hypothesis Test for the Population Proportion)
- A/B Testing (Comparing the means of two populations
- Customer Analysis (Comparing the proportions of 2 populations)
- Predictive medicine: prognosis and diagnostic accuracy
- Virtual assistance for patients and customer support
- Analyzing Wine Types and Quality
- Creation of drugs allows choosing, which experiments should be done and incorporates all the new information in a continuous learning loop
- Clustering algorithms for customer segmentation
- Discovering similarities across my Spotify music using data, clustering and visualization
- An End-to-End Project on Time Series Analysis and Forecasting with Python
- Using LSTMs to forecast time-series
- Evolution of a salesman: A complete genetic algorithm tutorial for Python
- A Machine Learning Approach—Building a Hotel Recommendation Engine
- How To Create Data Products That Are Magical Using Sequence-to-Sequence Models
- Deployment of all the project In cloudfoundary, AWS, AZURE and Google cloud platform.
- Deployment Expose, api to web browser and mobile application retraining approach of Machine learning model.
- Deployment Devops infrastructure for machine learning model.
- Deployment AUTO ML, Prediction based on streaming data.

Impact of Data Science

What You Get!!!

Course Completion Certificate

Will I get certified?

Upon successful completion of this data science course, you'll earn a Certificate. The certificate adds the required weight in any portfolio.

Internship Certificate

This certificate will be issued to those pursuing internships with our development team or clients with whom we have tie-ups. Data Science Internship gives opportunity to learn from professionals, gain practical experience in this field, and build a robust professional network.

Advantages of joining GAMAKA AI

- Instructor led online & classroom interactive sessions
- One-To-One online problem-solving sessions
- Complete Soft Copy of Notes & Latest Interview Preparation Set
- Trainers are working IT professional with top IT MNC's
- 100% Placement Assistance
- Resume Building & Mock Interview Sessions
- 100% Hands-on Training with Live Projects/Case Studies
- Internship & Course Completion Certificate
- 1 Year free subscriptions to Portal for Updated Guides, Notes, POC, Projects & Interview preparation set.
- Extensive training programs with Recorded Sessions
- 24*7 Support on <u>enquiry@gamakaai.com</u>

Struggling to Get a Job?

Industry Recruitment Challenge

Strategies to get a job

- Gain Industry Expertise, Internship Experience.
- Presentation skills & Grooming to face challenging interview
- Work on Industrial Projects/Case Studies
- Professional Resume & GIT Profile
- Interview Preparation with Mock Interviews
- Job Assistance & Placement

Trainer Role

Our Students Placed Companies

Python - Basic & Advanced

Duration: 40 Hours with hands on tutorials, 5 Case Studies with Internship

Introduction & Setup

- What is Python and history of Python?
- Why Python and where to use it?
- Discussion about Python 2 and Python 3
- Set up Python environment for development
- Discuss about IDE's like IDLE, Pycharm and Enthought Canopy
- Discussion about unique feature of Python
- First "Hello World" Python Program
- Start programming on interactive shell.
- Using Variables, Keywords

Functional Programming

Scripting

- Python Core Objects and built-in functions
- Number Object and operations
- String Object and Operations
- List Object and Operations
- Tuple Object and operations
- Dictionary Object and operations

- Introduction to Anaconda Distribution
- What is Anaconda Distribution?
- How to install Anaconda?
- conda repository
- Anaconda Navigator
- pip and conda to get new package
- pip and conda commands
- set Virtual
- Interactive and Programming techniques
 - Comments and document interlude in Python

• Set object and operations

- Boolean Object and None Object
- Different data Structures, data processing
- Map, Filter & Reduce
- List Comprehension
- Generators & Yields

Conditional Statements and Loops

- What are conditional statements?
- How to use the indentations for defining if, else, elif block
- What are loops?

- How to control the loops, infinite loops
- How to iterate through the various object
- Sequence and iterable objects

UDF Functions and Object Functions

- What are various type of functions
- Create UDF functions
- Parameterize UDF function, through named and unnamed parameters
- Defining and calling Function

- Anonymous Functions Lambda Functions
- String Object functions
- List and Tuple Object functions
- Dictionary Object functions

File Handling with Python

- Process text files using Python •
- Read/write and Append file object
- File object functions •

Packages & Modules

- Python inbuilt Modules .
- os, sys, datetime, time, random, zip modules
- Create Python UDM User Defined Modules
- Python Exceptions Handling .
- What is Exception? •
- Handling various exceptions using • try....except...else
- Try-finally clause •
- Argument of an Exception and create • self exception class
- Python Standard Exceptions
- Raising an exceptions, User-Defined • Exceptions

Debug Python programs using pdb

Object oriented features •

- File pointer and seek the pointer
- Truncate the file content and append dataFile test operations using os.path

- Define PYTHONPATH
- Create Python Packages
- init File for package initialization

Exceptional Handing and Object Oriented Python

- Understand real world examples on OOP
- Implement Object oriented with Python •
- Creating Classes and • Objects, Destroying Objects
- Accessing attributes, Built-In Class Attributes
- Inheritance and Polymorphism •
- Overriding Methods, Data Hiding •
- **Overloading Operators** •

Advanced Topics

Decorators •

debugger

Framework

•

•

- Managed Attributes
- Unicode & Byte String

Pycharm Debugger

- - Compile and matching
 - Matching vs searching
 - Search and Replace feature using RE

DML and DDL Operations with

- Extended Regular Expressions
- Wildcard characters and work with them

Database interaction with Python

•

•

Creating a Database with SQLite 3, •

What are regular expressions?

- CRUD Operations, •
- Creating a Database Object.
- Python MySQL Database Access •
 - Python Libraries
 - Stats Model

Databases

Pandas

Debugging, Framework & Regular expression

Metaclasses

Generators

Descriptors

- The match and search Function
- •
- - •

Performing Transactions

Handling Database Errors

- Assert statement for debugging Testing with Python using UnitTest

- Numpy
- SciPy

Data Science with Python

Duration: 90 Hours with hands on tutorials, 3 Case Studies with Internship

Statistics

- Important statistical concepts used in data science
- Difference between population and sample
- Types of variables
- Normal distribution
- Test hypotheses
- Central limit theorem
- Confidence interval •
 - Computing with Python NumPy and SciPy
- Mathematical Computing with Python -• NumPy
- Understanding NumPy •
- ndarray: Purpose, Properties, Types •
- ndarray: Class and Attributes •
- How to Access Array Elements? •
- Indexing, Slicing, Iteration, Indexing • with Boolean Arrays
- Studying Universal Functions •
- Data Manipulation and Machine • Learning with Python
- Data Manipulation with Python -• Pandas
- Understanding Pandas
- Defining Data Structures •
- Data Operations and Data Standardization
- Pandas: File Read and Write Support
- SQL Operation •
- Machine Learning with Python Scikit •

Fundamentals of Machine Learning

•

•

- Overview & Terminologies •
- What is Machine Learning?
- Why Learn?
- When is Learning required?
- Data Mining •
- Application Areas and Roles ٠

Machine Learning Concepts & Terminologies

- Measures of central tendency
- Measures of variability •
- Coefficient of variance
- Skewness and Kurtosis

Inferential statistics

- T-test •
- Type I and II errors
- Student's T distribution
- What is Shape Manipulation?
- Linear Algebra
- Scientific Computing with Python -• SciPy
- Understanding SciPy
- Studying SciPy Sub-packages •
- Sub-Packages: Integration and Optimize
- Sub-Packages: Statistics, Weave, I O
- Linear Algebra

Data Manipulation with Python

- Natural Language Processing with Scikit •
- NLP Environment Setup & Applications
- NLP Sentence Analysis & Libraries
- Scikit Built-in Modules & Feature • Extraction
- Scikit Grid Search & Parameters

Types of Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement learning

- Steps in developing a Machine Learning ٠ application
- Key tasks of Machine Learning
- Modelling Terminologies
- Learning a Class from Examples •
- Probability and Inference
- PAC (Probably Approximately Correct) • Learning
- Correlation •
- Regression •
- Model Assumptions •
- Estimation Process •
- Least Squares Method •
- Introduction ٠
- **Design Requirements** •
- Assumptions •
- Independence ٠
- Normality, Homoscedasticity, Linearity •
- Multiple Regression •
- Formal Statement of the Model
- Estimating parameters of the model ٠
- F-test for the overall fit of the model •
- Multiple regression model Building •
- Selecting the best Regression equation •
- Examples/Use Cases •

- Noise
- Noise and Model Complexity
- Triple Trade-Off
- Association Rules
- Association Measures •
- Sample Algorithms

Simple Linear Regression

- The Coefficient of Determination
- Correlation and Regression
- Simple Linear Regression Assignments

Multiple Regression Analysis

- Interpreting the Final Model
- Multicollinearity and its Diagnostics •
- Examples/Use Cases •
- Qualitative Independent Variables •
- Indicator variables •
- Interpretation of Regression Coefficients •
- Examples/Use Cases
- **Regression Diagnostics and Residual** Analysis
- Multiple Linear Regression Using R & Python
- Multiple Regression Assignment

Logistic Regression Analysis

- Theory Behind Logistic Regression ٠
- Assessing the Model and Predictors
- When and Why do we Use Logistic Regression?
- Binary
- Multinomial

- Interpreting Logistic Regression
- Sample size requirements
- he logistic function & Interpretation
- Methods for including variables
- Computational method

Maximum Likelihood Estimation

- Bernoulli distribution
- Multinomial distribution ٠
- Gaussian distribution •
- Assessing the Model •
- Assessing Changes in Models

- Assessing Predictors
- Methods of Regression •
- Complete Separation
- Overdispersion •
- MLE using Python •

Decision Trees

- Understanding the Concept
- Internal decision nodes
- Terminal leaves.
- Tree induction: Construction of the tree

Ensemble Methods - Bagging, Boosting

- Classification Trees
- Entropy

•

•

•

•

•

•

٠

٠

•

٠

•

٠

•

•

•

•

٠

•

٠

٠

•

- Selecting Attribute
- Information Gain

Introduction & Motivation

How random forests work?

Operation of Random Forest

& Random Forests

Ensemble Models

Problem Definition

Linear separable case

VC dimension

Independence

Baye's Rule

Joint Distribution

Non-linear SVM

Separating Hyperplanes

Formula for the Margin

The optimization problem

The Legrangin Dual Problem

Axioms of Probability Theory

Conditional Probability

Importance of the Support Vectors

Mapping the data to higher dimension

Finding the optimal hyperplane

Gini Index

Ensemble Classifiers

- Partially learned tree
- Overfitting
- Causes for over fitting
- Overfitting Prevention (Pruning) Methods
- Reduced Error Pruning
- Decision trees Advantages & Drawbacks
- Ensemble Models

Random Forests

- Random forest algorithm
 - Common variables for random forests
 - Random Forest practical consideration
 - Random Forest Features, Advantages and Disadvantages
 - Limitations of random forest
 - Random Forest using Python

Support Vector Machine

- The Kernel Trick
- Important Kernel Issues
- Soft Margin
- The primal optimization problem
- The Dual Formulation
- The "C" Problem: Overfitting and Underfitting
- Model selection procedure
- SVM For Multi-class classification
- Applications of SVM
- Advantages & Drawbacks of SVM

Bayesian Theory

- Generative Probabilistic Models
- Naïve Bayes Generative Model
- Naïve Bayesian Categorization
- Example & Exercises
- Naïve Bayes Classifier using Python

K-Nearest Neighbor (K-NN)

• Non-parametric methods

Bayesian Categorization

- k-Nearest Neighbor Estimator
- How to Choose k or h
 - Strengths and Weaknesses

Boosting

16

- Gradient Boosting
- Extreme Gradient Boosting

Dimensionality Reduction

•

- Principal Components Analysis (PCA)
- Singular Value Decomposition (SVD)
- Latent Dirichlet Analysis (LDA)

K Means Clustering

- Parametric Methods Recap
- Clustering
- Direct Clustering Method
- Mixture densities
- Classes v/s Clusters
- Non-Hierarchical Clustering
- K-Means
- Distance Metrics
- K-Means Algorithm
- K-Means Objective
- The Art of Forecasting
- Forecasting Approaches
- Qualitative Forecasting Methods
- Quantitative Forecasting Methods
- Time Series & its Components
- Trend
- Cyclical
- Seasonal
- Irregular
- Smoothing Methods
- Moving Average Method
- Exponential Smoothing Method
- Forecast Effect of Smoothing Coefficient
- Linear Time-Series Forecasting Model
- Forecast using Trend Models
- The Linear Trend Model
- Time Series Plot
- Seasonality Plot
 - Data Visualization and Matplotlib
- Python Libraries

- Color Quantization
- Vector Quantization
- Encoding/Decoding
- Soft Clustering
- Expectation Maximization (EM)
- EM Algorithm
- Feature Selection vs Extraction
- Seed Choice
- Uses of Clustering
- Clustering as Pre-processing

Time Series

- Trend Analysis
- Quadratic Time-Series Forecasting Model

Quadratic Time-Series Model Relationships

- Quadratic Trend Model
- Exponential Time-Series Forecasting Model
- Exponential Weight
- Exponential Trend Model
- Autoregressive Modeling
- Time Series Data Plot
- Auto-correlation Plot
- Evaluating Forecasts
- Quantitative Forecasting Steps
- Forecasting Guidelines
- Pattern of Forecast Error
- Residual Analysis
- Data Visualization and Web Scraping
 - Multiple Plots and SubPlots
 - Python Web Scraping and Data Science

- Latent Dirichlet Analysis (LDA
- ADA Boost

- Features of Matplotlib
- Line Properties Plot with (x, y)
- The Parser
- Searching & Modifying the Tree

Bigdata & Hadoop on AWS (Data Science Track)

Duration: 30+ Hours with hands on tutorials

Big data introduction

- What is big data?
- V's of Big data
- (Volume, Velocity, Variety, Veracity)
- Data types
- Distributed System
- Single system vs distributed system
- Solution for Big data : Hadoop

Hadoop core components

- Diff v1 &v2
- Overview of Hadoop eco system
- Map reduce

Introduction to AWS & Cloud

- Cloud computing
- AWS basics
- AWS services
- Setting up AWS freetier Account
- big data computation on AWS
- Access Permissions with S3
- SQL vs. NoSQL Databases
- Databases and Big Data on AWS
- Working on EMR with Hive

Spark overview

- Spark Architecture
- RDD
- Ml lib
- Linear Regression on spark
- logistic regression on spark
- decision tree on spark
- naive bayers on spark
- Xgboost On Spark

AWS ML tools

Amazon Sagemaker

Deep Learning with TensorFlow, Natural Language **Processing & Neural Networks**

Duration: 40 Hours with hands on tutorials

Deep Learning Fundamentals

- Introduction to Deep Learning
- Historical Context
- Advances in Related Fields
- Pre-requisites
- Installing the Required Libraries •
- Overview of Keras
- Installation Procedure •
- - Dependencies
- - TensorFlow backend
- Theano backend
- Optimization Problems
- Method of Steepest Descent
- Batch, Stochastic (Single and Mini-• batch) Descent
- Batch
- Stochastic Single Example •
- Stochastic Mini-batch •
- - Batch vs. Stochastic
- Challenges with SGD
- - Local Minima
- Saddle Points
- Selecting the Learning Rate •
- - Slow Progress in Narrow Valleys
- Algorithmic Variations on SGD
- Momentum
- Building an ANN •
- **Building Problem Description** •
- Evaluation the ANN •
- Improving the ANN •
- Tuning the ANN •
- Conventional Neural Networks •
- CNN Intuition
- Convolution Operation •

- Deep Learning Frameworks
- Introduction of each framework -• TensorFlow, Theano, Keras, Torch, Caffe
- Architecture of each framework
- Introduction to Keras
 - **Guiding Principles**
 - Modularity
 - Minimalism
 - Easy Extensibility
 - Work with Python

Stochastic Gradient Descent (SGD)

- Nesterov Accelerated Gradient (NAS)
- Annealing and Learning Rate Schedules
- Adagrad •
- RMSProp
- Adadelta
- Adam •
- Tricks and Tips for using SGD •
- - Preprocessing Input Data
- Choice of Activation Function
- Preprocessing Target Value •
- Initializing Parameters
- Shuffling Data
- Batch Normalization
- Early Stopping
- Gradient Noise

Artificial and Conventional Neural Network

- ReLU Layer
- Pooling and Flattening •
- Full Connection •
- Softmax and Cross-Entropy
- Building a CNN •
- Evaluating the CNN •
- Improving the CNN •
- Tuning the CNN •

TensorFlow installation

- Binary Cross Entropy

- Introduction to TensorFlow •
- TensorFlow APIs •

- Cross Entropy

Tensors •

Unit

Vector Form

Network

Maximum

Likelihood

•

•

•

•

•

٠

- Importing TensorFlow ٠
- Building & Running a computational graph

- Overall Structure of a Neural Network

- Expressing the Neural Network in

• - Evaluating the output of the Neural

- Training the Neural Network

Deriving Cost Functions using

- Variables: Creation, Initialization, • Saving, and
- Loading •
- Tensor Ranks, Shapes, and Types •
- Sharing Variables
- Reading Data
- Supervisor: Training Helper for Days-• Long

- Feed Forward Neural Networks - Cross Entropy •

 - Squared Error
 - Summary of Loss Functions •
 - Types of Units/Activation Functions/Layers
 - Linear Unit
 - Sigmoid Unit •
 - Softmax Layer •
 - Rectified Linear Unit (ReLU) •
 - Hyperbolic Tangent

TensorFlow

- Trainings.
- TensorFlow Debugger (tfdbg) • Command-LineInterface Tutorial: MNIST
- How to Use TensorFlow Debugger • (tfdbg) with
- tf.contrib.learn
- Exporting and Importing a MetaGraph ٠
- TensorFlow Version Semantics
- TensorFlow Data Versioning: GraphDefs and
- Checkpoints
- TensorBoard: Suite of visualization tools •

LSTM (Long Short-Term Memory) wit

Convolutional Neural Networks (CNN)

.

•

•

- Convolution Operation •
- Pooling Operation
- Convolution-Detector-Pooling Building Block

Recurrent Neural Networks (RNN)

- **RNN** Basics •
- Training RNNs
- **Bidirectional RNNs** •
- Gradient Explosion and Vanishing

Intuition behind CNNs

Gradient Clipping

Time Series

Case Study

Convolution Variants

Residual

- Autoencoders •
- Custom Metrics
- Hyperparameter tuning •

Self-Organizing Maps

- Self-Organizing Maps
- SOMs Intuition •
- Plan of Attack
- Working of Self-Organizing Maps •

- GPU Programming in Cloud: Case • Study
- Distributed TensorFlow

- Revisiting K-Means
- K-Means Clustering •
- Reading an Advanced SOM •
- Building an SOM

Boltzmann Machines

- Energy-Based Models (EBM) •
- Restricted Boltzmann Machine
- Exploring Contrastive Divergence
- Deep Belief Networks

- Deep Boltzmann Machines
- Building a Boltzmann Machine •
- Installing Ubuntu on Windows
- Installing PyTorch •

Database (Sql Server/Oracle)

Duration: 10 hours with hands on tutorials

- DDL, DML, RDBMS
- CODD Rule •
- Query •
- Insert Delete Update •
- Table •
- Table Join ٠
- Data Types ٠
- Set Operations •
- Constraints •
- Sub query •
- Aggregate Functions •
- Date Functions •
- Math Functions •
- String Functions •
- Data Convert Functions

- Analytical Functions
- Sequence Identity
- View
- Index
- Cursor •
- Transact SQL •
- Normalization & De-normalization •
- Procedure Function(PLSQL) •
- Trigger •
- Transaction(ACID) •
- XML in SQL •
- System Functions •
- System Settings
- System Tables Views
- User Role/Security •

Tableau

Duration: 40+ Hours with hands on tutorials

Introduction

- What is Data Visualization? •
- Scope of Data Visualization •
- Tableau and its uses
- Scenario and Objectives
- Installation and Application •

Visualization Design and Data Types

- Defining Data •
- Terminology of Data •
- Types of Data •
- Data Roles
- Dimension vs Measure •
- Understanding Data Connections ٠
- How to connect to Tableau Data • Server?
- Data Connections: Joining and Blending
- Defining a Join
- Various Kinds of Join •
- Usage of Join •
- Right Outer Join ٠
- Need to Organize Data •
- How to Organize and Simplify Data •
- What is Filtering •
- How to Apply a Filter to a View? •
- Filtering on Dimensions •
- Totals and Sub totals
- Aggregating Measures ٠
- Data Spotlighting •
- Summary Card •
- String Functions and Logical Functions
- What is Sorting •

- How to Sort Data in Tableau
- Types of Sorting
- Combined Fields
- Group and Aliases
- Hierarchies •
- Sets
- Tableau Bins
- Fixed Size and Variable Sized Bins
- Drilling Methods
- Aggregations •

Formatting and Annotations

Chart Types

- Understanding Formatting and • Annotations
- What is Spatial Analysis •
- What is built-in Geocoding
- What is Custom Geocoding
- How to add Caption to Views? •

- Features and Architecture of Tableau
- Terminology and Definitions •
- Tableau Work Space
- Files and Folders
- Continuous vs Discrete
- Exporting Data
- **Connecting Sheets** •
- Tableau Visualization Engine
- **Tableau and Data Connections** Custom SQL Enabled •
 - Data Blending and Tableau •
 - Usage of Data Blending •
 - Data Blending in Tableau
 - What is Kerberos Authentication •
 - Working of Kerberos Authentication •

Data Organization

- Adding Tooltips to Views
 - Using Title Caption and Tooltip •
- Formatting the Axes •
- Edit Axis Option •
- Formatting Window
- How to Format Mark Labels

- Drilling

- Objectives of Chart Types •
- How to Use Dual Charts •
- What is Dual Axis? •
- Using Combination Charts
- How to Use Gantt Charts for Activity ٠ Tracking
- Using Motion Chart ٠
- Objectives of Calculations •
- Strings Date Logical Calculation •
- Arithmetic Calculations •
- Aggregation Options •
- Grand Totals and Sub-Totals
- Quick Table Calculations •
- Custom Table Calculations •
- Ad-hoc Analytics •
- What is a Parameter •
- How to create a Parameter •
- Parameter Controls •
- What is Mapping •
- Modifying Locations within Tableau ٠

- What are Box and Whisker Plots •
- Using Reference Lines and Reference • Bands
- What is Pareto Analysis •
- What are Water Fall Charts
- How and What of Market Basket Analysis

Calculations

- LOD Calculations
- Parallel Period •
- Moving Averages •
- Running totals •
- Window Averages •
- Trend Lines •
- Predictive Models

Parameters, Mapping, and Locations

- Importing and Modifying Custom Geocoding
- Background Image •
- Exploring Geographic Search
- Pan Zoom Lasso and Radial Selection •

Dashboards and Work Sharing

- What is a Dashboard? •
- How to build Dashboards •
- How to build Interactive Dashboards •
- What are Action Filters? •
- How to create Story Boards •
- Best Practices to create Dashboards
- - Annotations
 - Tool Tips and keyboard short cuts •
 - Sharing work •
 - Tableau Online •
 - Tableau Reader •
 - Tableau Public •

Mongo DB

Duration: 10 hours with hands on tutorials

- Overview
- "NoSQL"
- What is MongoDB?
- JSON primer
- When / why should you use MongoDB?
- Installation and Administration
- Installing MongoDB
- Starting and stopping MongoDB servers

- The JavaScript console
- MongoDB Basics
- Servers
- Databases
- Collections
- Documents / Objects
- CRUD
- Indexes

Computer Vision & NLP

Computer Vision:

- GAN
- Generative Model Using GAN
- BERT
- Semi-supervised learning using GAN
- CNN Architectures
- LeNet-5
- AlexNet
- GoogLeNet
- VGGNet
- ResNet
- SSD
- Faster R CNN

NLP:

- Text Processing & Analytics
- Chat bots
- Spacy
- RNN
- Transfer Learning