

PYTHON BASICS INTERVIEW
QUESTIONS

[Document subtitle]

[DATE]
[COMPANY NAME]
[Company address]

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

1. What is Python?

Python is a high-level, interpreted, general-purpose programming language. Being a general-
purpose language, it can be used to build almost any type of application with the right
tools/libraries. Additionally, python supports objects, modules, threads, exception-handling
and automatic memory management which help in modelling real-world problems and
building applications to solve these problems.

2. What are the benefits of using Python?

Python is a general-purpose programming language that has simple, easy-to-learn syntax
which emphasizes readability and therefore reduces the cost of program maintenance.
Moreover, the language is capable of scripting, completely open-source and supports third-
party packages encouraging modularity and code-reuse.
Its high-level data structures, combined with dynamic typing and dynamic binding, attract a
huge community of developers for Rapid Application Development and deployment.

3. What is a dynamically typed language?

Before we understand what a dynamically typed language, we should learn about what typing

is. Typing refers to type-checking in programming languages. In a strongly-typed language,

such as Python, "1" + 2 will result in a type error, since these languages don't allow for "type-

coercion" (implicit conversion of data types). On the other hand, a weakly-typed language,

such as Javascript, will simply output "12" as result.
Type-checking can be done at two stages -

1. Static - Data Types are checked before execution.
2. Dynamic - Data Types are checked during execution.

Python being an interpreted language, executes each statement line by line and thus type-
checking is done on the fly, during execution. Hence, Python is a Dynamically Typed
language.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

4. What is an Interpreted language?

An Interpreted language executes its statements line by line. Languages such as Python,
Javascript, R, PHP and Ruby are prime examples of Interpreted languages. Programs written
in an interpreted language runs directly from the source code, with no intermediary
compilation step.

5. What is PEP 8 and why is it important?

PEP stands for Python Enhancement Proposal. A PEP is an official design document
providing information to the Python Community, or describing a new feature for Python or its
processes. PEP 8 is especially important since it documents the style guidelines for Python
Code. Apparently contributing in the Python open-source community requires you to follow
these style guidelines sincerely and strictly.

6. How is memory managed in Python?

Memory management in Python is handled by the Python Memory Manager. The memory
allocated by the manager is in form of a private heap space dedicated for Python. All Python
objects are stored in this heap and being private, it is inaccessible to the programmer.
Though, python does provide some core API functions to work upon the private heap space.
Additionally, Python has an in-built garbage collection to recycle the unused memory for the
private heap space.

7. What are Python namespaces? Why are they used?

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

A namespace in Python ensures that object names in a program are unique and can be used
without any conflict. Python implements these namespaces as dictionaries with 'name as
key' mapped to a corresponding 'object as value'. This allows for multiple namespaces to use
the same name and map it to a separate object. A few examples of namespaces are as
follows:

▪ Local Namespace includes local names inside a function. the namespace is temporarily
created for a function call and gets cleared when the function returns.

▪ Global Namespace includes names from various imported packages/ modules that is being
used in the current project. This namespace is created when the package is imported in the
script and lasts until the execution of the script.

▪ Built-in Namespace includes built-in functions of core Python and built-in names for various
types of exceptions.
Lifecycle of a namespace depends upon the scope of objects they are mapped to. If the
scope of an object ends, the lifecycle of that namespace comes to an end. Hence, it isn't
possible to access inner namespace objects from an outer namespace.

8. What is Scope in Python?

Every object in Python functions within a scope. A scope is a block of code where an object
in Python remains relevant. Namespaces uniquely identify all the objects inside a program.
However, these namespaces also have a scope defined for them where you could use their
objects without any prefix. A few examples of scope created during code execution in Python
are as follows:

1. A local scope refers to the local objects available in the current function.
2. A global scope refers to the objects available throught the code execution since their

inception.
3. A module-level scope refers to the global objects of the current module accessible in the

program.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

4. An outermost scope refers to all the built-in names callable in the program. The objects in
this scope are searched last to find the name referenced.

Note: Local scope objects can be synced with global scope objects using keywords such as global.

9. What is Scope Resolution in Python?

Sometimes objects within the same scope have the same name but function differently. In
such cases, scope resolution comes into play in Python automatically. A few examples of
such behaviour are:

▪ Python modules namely 'math' and 'cmath' have a lot of functions that are common to both
of them - log10(), acos(), exp() etc. To resolve this amiguity, it is necessary to prefix them
with their respective module, like math.exp() and cmath.exp().

▪ Consider the code below, an object temp has been initialized to 10 globally and then to 20 on
function call. However, the function call didn't change the value of the temp globally. Here,
we can observe that Python draws a clear line between global and local variables treating
both their namespaces as separate identities.
temp = 10 # global-scope variable

def func():
 temp = 20 # local-scope variable
 print(temp)

print(temp) # output => 10
func() # output => 20
print(temp) # output => 10
This behaviour can be overriden using the global keyword inside the function, as shown in
the following example:
temp = 10 # global-scope variable

def func():
 global temp
 temp = 20 # local-scope variable
 print(temp)

print(temp) # output => 10
func() # output => 20
print(temp) # output => 20

10. What are decorators in Python?

Decorators in Python are essentially functions that add functionality to an existing function
in Python without changing the structure of the function itself. They are represented by
the @decorator_name in Python and are called in bottom-up fashion. For example:
decorator function to convert to lowercase

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

def lowercase_decorator(function):
 def wrapper():
 func = function()
 string_lowercase = func.lower()
 return string_lowercase
 return wrapper

decorator function to split words
def splitter_decorator(function):
 def wrapper():
 func = function()
 string_split = func.split()
 return string_split
 return wrapper

@splitter_decorator # this is executed next
@lowercase_decorator # this is executed first
def hello():
 return 'Hello World'

hello() # output => ['hello' , 'world']
The beauty of the decorators lies in the fact that besides adding functionality to the output of
the method, they can even accept arguments for functions and can further modify those
arguments before passing it to the function itself. The inner nested function, i.e. 'wrapper'
function, plays a significant role here. It is implemented to enforce encapsulation and thus,
keep itself hidden from the global scope.
decorator function to capitalize names
def names_decorator(function):
 def wrapper(arg1, arg2):
 arg1 = arg1.capitalize()
 arg2 = arg2.capitalize()
 string_hello = function(arg1, arg2)
 return string_hello
 return wrapper

@names_decorator
def say_hello(name1, name2):
 return 'Hello ' + name1 + '! Hello ' + name2 + '!'

say_hello('sara', 'ansh') # output => 'Hello Sara! Hello Ansh!'

11. What are lists and tuples? What is the key
difference between the two?

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

Lists and Tuples are both sequence data types that can store a collection of objects in
Python. The objects stored in both sequences can have different data types. Lists are
represented with square brackets ['sara', 6, 0.19], while tuples are represented
with parantheses ('ansh', 5, 0.97).
But what is the real difference between the two? The key difference between the two is that
while lists are mutable, tuples on the other hand are immutable objects. This means that
lists can be modified, appended or sliced on-the-go but tuples remain constant and cannot
be modified in any manner. You can run the following example on Python IDLE to confirm the
difference:
my_tuple = ('sara', 6, 5, 0.97)
my_list = ['sara', 6, 5, 0.97]

print(my_tuple[0]) # output => 'sara'
print(my_list[0]) # output => 'sara'

my_tuple[0] = 'ansh' # modifying tuple => throws an error
my_list[0] = 'ansh' # modifying list => list modified

print(my_tuple[0]) # output => 'sara'
print(my_list[0]) # output => 'ansh'

12. What are Dict and List comprehensions?

Python comprehensions, like decorators, are syntactic sugar constructs that help build
altered and filtered lists, dictionaries or sets from a given list, dictionary or set. Using
comprehensions, saves a lot of time and code that might be considerably more verbose
(containing more lines of code). Let's check out some examples, where comprehensions can
be truly beneficial:

▪ Performing mathematical operations on the entire list
▪ my_list = [2, 3, 5, 7, 11]
▪

▪ squared_list = [x**2 for x in my_list] # list comprehension
▪ # output => [4 , 9 , 25 , 49 , 121]
▪

▪ squared_dict = {x:x**2 for x in my_list} # dict comprehension
▪ # output => {11: 121, 2: 4 , 3: 9 , 5: 25 , 7: 49}
▪ Performing conditional filtering operations on the entire list
▪ my_list = [2, 3, 5, 7, 11]
▪

▪ squared_list = [x**2 for x in my_list if x%2 != 0] # list comprehension
▪ # output => [9 , 25 , 49 , 121]
▪

▪ squared_dict = {x:x**2 for x in my_list if x%2 != 0} # dict comprehension
▪ # output => {11: 121, 3: 9 , 5: 25 , 7: 49}

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

▪ Combining multiple lists into one
Comprehensions allow for multiple iterators and hence, can be used to combine multiple lists
into one.

▪ a = [1, 2, 3]
▪ b = [7, 8, 9]
▪

▪ [(x + y) for (x,y) in zip(a,b)] # parallel iterators
▪ # output => [8, 10, 12]
▪

▪ [(x,y) for x in a for y in b] # nested iterators
▪ # output => [(1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9), (3, 7), (3, 8), (3, 9)]
▪ Flattening a multi-dimensional list

A similar approach of nested iterators (as above) can be applied to flatten a multi-dimensional
list or work upon its inner elements.

▪ my_list = [[10,20,30],[40,50,60],[70,80,90]]
▪

▪ flattened = [x for temp in my_list for x in temp]
▪ # output => [10, 20, 30, 40, 50, 60, 70, 80, 90]

Note: List comprehensions have the same effect as the map method in other languages. They follow

the mathematical set builder notation rather than map and filter functions in Python.

13. What are the common built-in data types in
Python?

There are several built-in data types in Python. Although, Python doesn't require data types
to be defined explicitly during variable declarations but type errors are likely to occur if the
knowledge of data types and their compatibility with each other are neglected. Python
provides type() and isinstance() functions to check the type of these variables. These data
types can be grouped into the following catetgories-

▪ None Type
None keyword represents the null values in Python. Boolean equality operation can be
performed using these NoneType objects.

Class Name Description

NoneType Represents the NULL values in Python

▪

▪ Numeric Types

There are three distint numeric types - integers, floating-point numbers, and complex

numbers. Additionally, booleans are a sub-type of integers.

Class Name Description

int Stores integer literals including hex, octal and binary numbers as integers

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

float Stores literals containing decimal values and/or exponent sign as floating-point numbers

complex Stores complex number in the form (A + Bj) and has attributes: real and imag

bool Stores boolean value (True or False)

▪ Note: The standard library also includes fractions to store rational numbers and decimal to store

floating-point numbers with user-defined precision.

▪ Sequence Types

According to Python Docs, there are three basic Sequence Types - lists, tuples, and range

objects. Sequence types have the in and not in operators defined for their traversing their

elements. These operators share the same priority as the comparison operations.

Class Name Description

list Mutable sequence used to store collection of items.

tuple Immutable sequence used to store collection of items.

range Represents an immutable sequence of numbers generated during execution.

str Immutable sequence of Unicode code points to store textual data.

▪ Note: The standard library also includes additional types for processing:

1. Binary data such as bytearray bytes memoryview , and

2. Text strings such as str .

▪ Mapping Types

A mapping object can map hashable values to random objects in Python. Mappings objects

are mutable and there is currently only one standard mapping type, the dictionary.

Class Name Description

dict Stores comma-separated list of key: value pairs

▪

▪ Set Types
Currently, Python has two built-in set types - set and frozenset. set type is mutable and
supports methods like add() and remove(). frozenset type is immutable and can't be
modified after creation.

Class Name Description

set Mutable unordered collection of distinct hashable objects

frozenset Immutable collection of distinct hashable objects

▪ Note: set is mutable and thus cannot be used as key for a dictionary. On the other hand, frozenset is

immutable and thus, hashable, and can be used as a dictionary key or as an element of another set.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

▪ Modules
Module is an additional built-in type supported by the Python Interpreter. It supports one
special operation, i.e., attribute access: mymod.myobj, where mymod is a module
and myobj references a name defined in m's symbol table. The module's symbol table
resides in a very special attribute of the module __dict__, but direct assignment to this
module is neither possible nor recommended.

▪ Callable Types
Callable types are the types to which function call can be applied. They can be user-defined
functions, instance methods, generator functions, and some other built-in
functions, methods and classes.
Refer the documentation at docs.python.org for a detailed view into the callable types.

14. What is lambda in Python? Why is it used?

Lambda is an anonymous function in Python, that can accept any number of arguments, but
can only have a single expression. It is generally used in situations requiring an anonymous
function for a short time period. Lambda functions can be used in either of the two ways:

▪ Assigning lambda functions to a variable
▪ mul = lambda a, b : a * b
▪ print(mul(2, 5)) # output => 10
▪ Wrapping lambda functions inside another function
▪ def myWrapper(n):
▪ return lambda a : a * n
▪

▪ mulFive = myWrapper(5)
▪ print(mulFive(2)) # output => 10

15. What is pass in Python?

The pass keyword represents a null operation in Python. It is generally used for the purpose
of filling up empty blocks of code which may execute during runtime but has yet to be written.
Without the pass statement in the following code, we may run into some errors during code
execution.
def myEmptyFunc():
 # do nothing
 pass

myEmptyFunc() # nothing happens

Without the pass keyword
File "<stdin>", line 3
IndentationError: expected an indented block

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293
https://docs.python.org/3/reference/datamodel.html

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

16. How do you copy an object in Python?

In Python, the assignment statement (= operator) does not copy objects. Instead, it creates
a binding between the existing object and the target variable name. To create copies of an
object in Python, we need to use the copy module. Moreover, there are two ways of creating
copies for the given object using the copy module -

• Shallow Copy is a bit-wise copy of an object. The copied object created has an exact copy
of the values in the original object. If either of the values are references to other objects, just
the reference addresses for the same are copied.

• Deep Copy copies all values recursively from source to target object, i.e. it even duplicates
the objects referenced by the source object.
from copy import copy, deepcopy

list_1 = [1, 2, [3, 5], 4]

shallow copy

list_2 = copy(list_1)
list_2[3] = 7
list_2[2].append(6)

list_2 # output => [1, 2, [3, 5, 6], 7]
list_1 # output => [1, 2, [3, 5, 6], 4]

deep copy

list_3 = deepcopy(list_1)
list_3[3] = 8
list_3[2].append(7)

list_3 # output => [1, 2, [3, 5, 6, 7], 8]
list_1 # output => [1, 2, [3, 5, 6], 4]

17. What is the difference between xrange and range
in Python?

xrange() and range() are quite similar in terms of functionality. They both generate a
sequence of integers, with the only difference that range() returns a Python list,
whereas, xrange() returns an xrange object.
So how does that make a difference? It sure does, because unlike range(), xrange() doesn't
generate a static list, it creates the value on the go. This technique is commonly used with an
object type generators and has been termed as "yielding".
Yielding is crucial in applications where memory is a constraint. Creating a static list as in
range() can lead to a Memory Error in such conditions, while, xrange() can handle it optimally
by using just enough memory for the generator (significantly less in comparison).

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

for i in xrange(10): # numbers from o to 9
 print i # output => 0 1 2 3 4 5 6 7 8 9

for i in xrange(1,10): # numbers from 1 to 9
 print i # output => 1 2 3 4 5 6 7 8 9

for i in xrange(1, 10, 2): # skip by two for next
 print i # output => 1 3 5 7 9

Note: xrange has been deprecated as of Python 3.x. Now range does exactly the same

what xrange used to do in Python 2.x, since it was way better to use xrange() than the original

range() function in Python 2.x.

18. What are modules and packages in Python?

Python packages and Python modules are two mechanisms that allow for modular
programming in Python. Modularizing ahs several advantages -

1. Simplicity: Working on a single module helps you focus on a relatively small portion of the
problem at hand. This makes development easier and less error-prone.

2. Maintainability: Modules are designed to enforce logical boundaries between different
problem domains. If they are written in a manner that reduces interdependency, it is less likely
that modifications in a module might impact other parts of the program.

3. Reusability: Functions defined in a module can be easily reused by other parts of the
application.

4. Scoping: Modules typically define a separate namespace, which helps avoid confusion
between identifiers from other parts of the program.
Modules, in general, are simply Python files with a .py extension and can have a set of
functions, classes or variables defined and implemented. They can be imported and initialized
once using the import statement. If partial functionality is needed, import the requisite classes
or functions using from foo import bar.
Packages allow for hierarchial structuring of the module namespace using dot notation.
As, modules help avoid clashes between global variable names, in a similary
manner, packages help avoid clashes between module names.
Creating a package is easy since it makes use of the system's inherent file structure. So just
stuff the modules into a folder and there you have it, the folder name as the package name.
Importing a module or its contents from this package requires the package name as prefix to
the module name joined by a dot.

Note: You can technically import the package as well, but alas, it doesn't import the modules within

the package to the local namespace, thus, it is practically useless.

19. What are global, protected and private attributes in
Python?

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

• Global variables are public variables that are defined in the global scope. To use the
variable in the global scope inside a function, we use the global keyword.

• Protected attributes are attributes defined with a underscore prefixed to their identifier
eg. _sara. They can still be accessed and modified from outside the class they are defined
in but a responsible developer should refrain from doing so.

• Private attributes are attributes with double underscore prefixed to their identifier
eg. __ansh. They cannot be accessed or modified from the outside directly and will result in
an AttributeError if such an attempt is made.

20. What is self in Python?

Self is a keyword in Python used to define an instance or an object of a class. In Python, it is
explicity used as the first paramter, unlike in Java where it is optional. It helps in disinguishing
between the methods and attributes of a class from its local variables.

21. What is __init__?

__init__ is a contructor method in Python and is automatically called to allocate memory
when a new object/instance is created. All classes have a __init__ method associated with
them. It helps in distinguishing methods and attributes of a class from local variables.
class definition
class Student:
 def __init__(self, fname, lname, age, section):
 self.firstname = fname
 self.lastname = lname
 self.age = age
 self.section = section

creating a new object
stu1 = Student("Sara", "Ansh", 22, "A2")

22. What is break, continue and pass in Python?

Break
The break statement terminates the loop immediately
and the control flows to the statement after the body of the loop.

Continue
The continue statement terminates the current iteration of the statement,
skips the rest of the code in the current iteration and the control flows to the next iteration of the loop.

Pass
As explained above, pass keyword in Python is generally used to fill-up empty blocks
and is similar to an empty statement represented by a semi-colon in languages such as Java, C++, Javascript etc.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

pat = [1, 3, 2, 1, 2, 3, 1, 0, 1, 3]

for p in pat:
 pass
 if (p == 0):
 current = p
 break
 elif (p % 2 == 0):
 continue
 print(p) # output => 1 3 1 3 1

print(current) # output => 0

23. What is pickling and unpickling?

Python library offers a feature - serialization out of the box. Serializing a object refers to
transforming it into a format that can be stored, so as to be able to deserialize it later on, to
obtain the original object. Here, the pickle module comes into play.

Pickling
Pickling is the name of the serialization process in Python. Any object in Python can be
serialized into a byte stream and dumped as a file in the memory. The process of pickling is
compact but pickle objects can be compressed further. Moreover, pickle keeps track of the
objects it has serialized and the serialization is portable across versions.
The function used for the above process is pickle.dump().

Unpickling
Unpickling is the complete inverse of pickling. It deserializes the byte stream to recreate the
objects stored in the file, and loads the object to memory.
The function used for the above process is pickle.load().

Note: Python has another, more primitive, serialization module called marshall, which exists
primarily to support .pyc files in Python and differs significantly from pickle.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

24. What are generators in Python?

Generators are functions that return an iterable collection of items, one at a time, in a set
manner. Generators, in general, are used to create iterators with a different approach. They
employ the use of yield keyword rather than return to return a generator object.
Let's try and build a generator for fibonacci numbers -
generate fibonacci numbers upto n
def fib(n):
 p, q = 0, 1
 while(p < n):
 yield p
 p, q = q, p + q

x = fib(10) # create generator object

iterating using __next__(), for Python2, use next()
x.__next__() # output => 0
x.__next__() # output => 1
x.__next__() # output => 1
x.__next__() # output => 2
x.__next__() # output => 3
x.__next__() # output => 5
x.__next__() # output => 8
x.__next__() # error

iterating using loop
for i in fib(10):
 print(i) # output => 0 1 1 2 3 5 8

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

25. What is PYTHONPATH in Python?

PYTHONPATH is an environment variable which you can set to add additional directories
where Python will look for modules and packages. This is especially useful in maintaining
Python libraries that you do not wish to install in the global default location.

26. What is the use of help() and dir() functions?

help() function in Python is used to display the documentation of modules, classes,
functions, keywords, etc. If no parameter is passed to the help() function, then an
interactive help utility is launched on the console.
dir() function tries to return a valid list of attributes and methods of the object it is called upon.
It behaves differently with different objects, as it aims to produce the most relevant data,
rather than the complete information.

▪ For Modules/Library objects, it returns a list of all attributes, contained in that module.
▪ For Class Objects, it returns a list of all valid attributes and base attributes.
▪ With no arguments passed, it returns a list of attributes in the current scope.

27. What is the difference between .py and .pyc files?

▪ .py files contain the source code of a program. Whereas, .pyc file contains the bytecode of
your program. We get bytecode after compilation of .py file (source code). .pyc files are not
created for all the files that you run. It is only created for the files that you import.

▪ Before executing a python program python interpreter checks for the compiled files. If the file
is present, the virtual machine executes it. If not found, it checks for .py file. If found, compiles
it to .pyc file and then python virtual machine executes it.

▪ Having .pyc file saves you the compilation time.

28. How Python is interpreted?

▪ Python as a language is not interpreted or compiled. Interpreted or compiled is the property
of the implementation. Python is a bytecode(set of interpreter readable instructions)
interpreted generally.

▪ Source code is a file with .py extension.
▪ Python compiles the source code to a set of instructions for a virtual machine. The Python

interpreter is an implementation of that virtual machine. This intermediate format is called
“bytecode”.

▪ .py source code is first compiled to give .pyc which is bytecode. This bytecode can be then
interpreted by official CPython, or JIT(Just in Time compiler) compiled by PyPy.

29. What are unittests in Python?

▪ unittest is a unit testing framework of Python.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

▪ Unit testing means testing different components of software separately. Can you think why
unit testing is important? Imagine a scenario, you are building software which uses three
components namely A, B, and C. Now, suppose your software breaks at a point time. How
will you find which component was responsible for breaking the software? Maybe it was
component A that failed, which in turn failed component B, and this actually failed the
software. There can be many such combinations.

▪ This is why it is necessary to test each and every component properly so that we know which
component might be highly responsible for the failure of the software.

30. What is docstring in Python?

▪ Documentation string or docstring is a multiline string used to document a specific code
segment.

▪ The docstring should describe what the function or method does.

31. How are arguments passed by value or by
reference in python?

▪ Pass by value: Copy of the actual object is passed. Changing the value of the copy of the
object will not change the value of the original object.

▪ Pass by reference: Reference to the actual object is passed. Changing the value of the new
object will change the value of the original object.
In Python, arguments are passed by reference, i.e., reference to the actual object is passed.

def appendNumber(arr):
 arr.append(4)

arr = [1, 2, 3]

print(arr) #Output: => [1, 2, 3]
appendNumber(arr)

print(arr) #Output: => [1, 2, 3, 4]

32. What are iterators in Python?

▪ Iterator is an object.
▪ It remembers its state i.e., where it is during iteration (see code below to see how)
▪ __iter__() method initializes an iterator.
▪ It has a __next__() method which returns the next item in iteration and points to the next

element. Upon reaching the end of iterable object __next__() must
return StopIteration exception.

▪ It is also self iterable.
▪ Iterators are objects with which we can iterate over iterable objects like lists, strings, etc.

class ArrayList:

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

 def __init__(self, number_list):
 self.numbers = number_list

 def __iter__(self):
 self.pos = 0
 return self

 def __next__(self):
 if(self.pos < len(self.numbers)):
 self.pos += 1
 return self.numbers[self.pos - 1]
 else:
 raise StopIteration

array_obj = ArrayList([1, 2, 3])

it = iter(array_obj)

print(next(it)) #output: 2
print(next(it)) #output: 3

print(next(it))
#Throws Exception
#Traceback (most recent call last):
#...
#StopIteration

33. What is slicing in Python?

▪ As the name suggests, ‘slicing’ is taking parts of.
▪ Syntax for slicing is [start : stop : step]
▪ start is the starting index from where to slice a list or tuple
▪ stop is the ending index or where to sop.
▪ step is the number of steps to jump.
▪ Default value for start is 0, stop is number of items, step is 1.
▪ Slicing can be done on strings, arrays, lists, and tuples.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(numbers[1 : : 2]) #output : [2, 4, 6, 8, 10]

34. Explain how can you make a Python Script
executable on Unix?

▪ Script file must begin with #!/usr/bin/env python

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

35. Explain how to delete a file in Python?

▪ Use command os.remove(file_name)
import os
os.remove("ChangedFile.csv")
print("File Removed!")

36. Explain split() and join() functions in Python?

▪ You can use split() function to split a string based on a delimiter to a list of strings.
▪ You can use join() function to join a list of strings based on a delimiter to give a single string.

string = "This is a string."
string_list = string.split(' ') #delimiter is ‘space’ character or ‘ ‘
print(string_list) #output: ['This', 'is', 'a', 'string.']
print(' '.join(string_list)) #output: This is a string.

37. What is the difference between Python Arrays and
lists?

▪ Arrays in python can only contain elements of same data types i.e., data type of array should
be homogeneous. It is a thin wrapper around C language arrays and consumes far less
memory than lists.

▪ Lists in python can contain elements of different data types i.e., data type of lists can be
heterogeneous. It has the disadvantage of consuming large memory.
import array

a = array.array('i', [1, 2, 3])

for i in a:
 print(i, end=' ') #OUTPUT: 1 2 3

a = array.array('i', [1, 2, 'string']) #OUTPUT: TypeError: an integer is required (got t
ype str)

a = [1, 2, 'string']

for i in a:
 print(i, end=' ') #OUTPUT: 1 2 string

38. What does *args and **kwargs mean?

*args
▪ *args is a special syntax used in function definition to pass variable-length argument.

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

 GAMAKA AI

 AI Center of Excellence

 www.gamakaai.com

 +91-7378483656 +91-7378493293

▪ “*” means variable length and “args” is the name used by convention. You can use any other.
def multiply(a, b, *argv):
 mul = a * b

 for num in argv:
 mul *= num

 return mul

print(multiply(1, 2, 3, 4, 5)) #output: 120
**kwargs

▪ **kwargs is a special syntax used in function definition to pass variable-length keyworded
argument.

▪ Here, also, “kwargs” is used just by convention. You can use any other name.
▪ Keyworded argument means a variable which has a name when passed to a function.
▪ It is actually a dictionary of variable name and its value.

def tellArguments(**kwargs):
 for key, value in kwargs.items():
 print(key + ": " + value)
tellArguments(arg1 = "argument 1", arg2 = "argument 2", arg3 = "argument 3")
#output:
arg1: argument 1
arg2: argument 2
arg3: argument 3

39. What are negative indexes and why are they used?

▪ Negative indexes are the indexes from the end of the list or tuple or string.
▪ Arr[-1] means last element of array Arr[]

arr = [1, 2, 3, 4, 5, 6]

#get the last element
print(arr[-1]) #output 6

#get the second last element
print(arr[-2]) #output 5

http://www.gamakaai.com/
tel:+91-7378483656
https://wa.me/+917378493293

